Differences in control of limb dynamics during dominant and nondominant arm reaching.
نویسندگان
چکیده
This study compares the coordination patterns employed for the left and right arms during rapid targeted reaching movements. Six right-handed subjects reached to each of three targets, designed to elicit progressively greater amplitude interaction torques at the elbow joint. All targets required the same elbow excursion (20 degrees ), but different shoulder excursions (5, 10, and 15 degrees, respectively). Movements were restricted to the shoulder and elbow and supported on a horizontal plane by a frictionless air-jet system. Subjects received visual feedback only of the final hand position with respect to the start and target locations. For motivation, points were awarded based on final position accuracy for movements completed within an interval of 400-600 ms. For all subjects, the right and left hands showed a similar time course of improvement in final position accuracy over repeated trials. After task adaptation, final position accuracy was similar for both hands; however, the hand trajectories and joint coordination patterns during the movements were systematically different. Right hand paths showed medial to lateral curvatures that were consistent in magnitude for all target directions, whereas the left hand paths had lateral to medial curvatures that increased in magnitude across the three target directions. Inverse dynamic analysis revealed substantial differences in the coordination of muscle and intersegmental torques for the left and right arms. Although left elbow muscle torque contributed largely to elbow acceleration, right arm coordination was characterized by a proximal control strategy, in which movement of both joints was primarily driven by the effects of shoulder muscles. In addition, right hand path direction changes were independent of elbow interaction torque impulse, indicating skillful coordination of muscle actions with intersegmental dynamics. In contrast, left hand path direction changes varied directly with elbow interaction torque impulse. These findings strongly suggest that distinct neural control mechanisms are employed for dominant and non dominant arm movements. However, whether interlimb differences in neural strategies are a consequence of asymmetric use of the two arms, or vice versa, is not yet understood. The implications for neural organization of voluntary movement control are discussed.
منابع مشابه
Handedness: dominant arm advantages in control of limb dynamics.
Recent findings from our laboratory suggest that a major factor distinguishing dominant from nondominant arm performance is the ability by which the effects of intersegmental dynamics are controlled by the CNS. These studies indicated that the dominant arm reliably used more torque-efficient patterns for movements made with similar speeds and accuracy than nondominant arm movements. Whereas, no...
متن کاملLearned dynamics of reaching movements generalize from dominant to nondominant arm.
Accurate performance of reaching movements depends on adaptable neural circuitry that learns to predict forces and compensate for limb dynamics. In earlier experiments, we quantified generalization from training at one arm position to another position. The generalization patterns suggested that neural elements learning to predict forces coded a limb's state in an intrinsic, muscle-like coordina...
متن کاملLateralized sensitivity of motor memories to the kinematics of the opposite arm reveals functional specialization during bimanual actions.
It is generally believed that the dominant arm exhibits greater functional advantages over the nondominant arm in every respect, including muscular strength and movement accuracy. Recent studies have proposed that this laterality is due to different underlying control strategies for each limb rather than different limb capabilities constraining performance. However, the functional role and mech...
متن کاملNondominant arm advantages in load compensation during rapid elbow joint movements.
This study was designed to examine interlimb asymmetries in responding to unpredictable changes in inertial loads, which have implications for our understanding of the neural mechanisms underlying handedness. Subjects made repetitive single joint speed constrained 20 degrees elbow flexion movements, while the arm was supported on a horizontal, frictionless, air-jet system. On random trials, a 2...
متن کاملPrediction of Body Center of Mass Acceleration From Trunk and Lower Limb Joints Accelerations During Quiet Standing
Purpose: Predicting body Center of Mass (COM) acceleration is carried out with more accuracy based on the acceleration of three joints of lower limb compared to only accounting joints of hip and ankle. Given that trunk movement during quite standing is noticeable, calculating trunk acceleration in model might increase prediction accuracy of COM acceleration. Moreover, in previous research studi...
متن کاملThe comparison of acromiohumeral distance and scapular dyskinesis prevalence in females with and without rounded shoulder posture
Background: Altered scapular kinematics in individuals with rounded shoulder posture (RSP) may affect acromiohumeral distance (AHD). The purpose of this study was to compare AHD and scapular dyskinesis prevalence in individuals with and without RSP. Methods: A total of 44 women (RSP, n=21; control, n=23) participated in the study. RSP was assessed by measuring acromion to table distance (AT...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 83 5 شماره
صفحات -
تاریخ انتشار 2000